Fahrschule Schulz Erlangen

Beispiele (1) Die Funktion f:] 0, 1 [ → ℝ mit f (x) = x hat das Bild] 0, 1 [. (2) Die Funktion g:] 0, 1 [ → ℝ mit g(x) = 1 hat das Bild { 1} = [ 1, 1]. (3) Die Funktion h:] 0, 1 [ → ℝ mit h(x) = |x − 1/2| hat das Bild [ 0, 1/2 [. Den kompakten Intervallen der Form [ a, b] kommt in der Analysis eine besondere Bedeutung zu. Beispiele sind: Prinzip der Intervallschachtelung Jede Intervallfolge [ a, b] ⊇ [ a 1, b 1] ⊇ … besitzt einen nichtleeren Schnitt. Satz von Bolzano-Weierstraß Jede Folge in [ a, b] besitzt einen Häufungspunkt in [ a, b]. Satz über die gleichmäßige Stetigkeit Jede stetige Funktion auf [ a, b] ist gleichmäßig stetig. Satz über den Wertebereich Jede stetige Funktion auf [ a, b] besitzt ein Intervall [ c, d] als Bild.

  1. Satz von lindemann weierstraß
  2. Satz von weierstraß castle
  3. Satz von bolzano weierstraß
  4. Satz von weierstraß club

Satz Von Lindemann Weierstraß

(Letzteres kann nicht passieren, aber das weiß man an dieser Stelle noch nicht). Nun wendet man den Satz von Bolzano-Weierstraß auf die Folge (x n) n ∈ ℕ im Definitionsbereich an. Dies liefert einen Häufungspunkt p der Folge, und man zeigt nun mit Hilfe der Stetigkeit von f im Punkt p, dass die Funktion f im Punkt p wie gewünscht ihr Maximum annimmt. Eine analoge Argumentation oder ein Übergang zu −f zeigt die Annahme des Minimums. Eine stetige Funktion auf einem Intervall [ a, b] kann ihr Maximum und ihr Minimum mehrfach annehmen, man betrachte etwa den Kosinus auf dem Intervall [ 0, 6 π]. Eine konstante Funktion nimmt sogar in jedem Punkt ihr Minimum und ihr Maximum an. Umgekehrt gilt: Ist das Minumum einer Funktion gleich ihrem Maximum, so ist die Funktion konstant. Der Extremwertsatz ist für stetige Funktionen, die auf offenen oder halboffenen Intervallen definiert sind, im Allgemeinen nicht mehr gültig: Beispiele (1) Die Funktion f:] 0, 1] → ℝ mit f (x) = 1/x nimmt ihr Minimum 1 im Punkt 1 an, aber ihr Wertebereich [ 1, +∞ [ ist nach oben unbeschränkt und hat kein Maximum.

Satz Von Weierstraß Castle

Der Beweis beruht entscheidend auf dem Intervallschachtelungsprinzip, welches wiederum äquivalent ist zur Vollständigkeit der reellen Zahlen. Visualisierung der Beweisskizze Gegeben sei eine beschränkte Folge. Diese besitzt damit eine untere Schranke und eine obere Schranke. Das Intervall wird in zwei gleich große Teilintervalle unterteilt. wird wieder in zwei Teilintervalle zerlegt. Auch hier wählt man das Teilintervall als drittes Intervall, welches unendlich viele Folgeglieder von besitzt. Verallgemeinerungen Endlichdimensionale Vektorräume Die komplexen Zahlen werden im Kontext dieses Satzes als zweidimensionaler reeller Vektorraum betrachtet. Für eine Folge von Spaltenvektoren mit n reellen Komponenten wählt man zuerst eine Teilfolge, die in der ersten Komponente konvergiert. Von dieser wählt man wieder eine Teilfolge, die auch in der zweiten Komponente konvergiert. Die Konvergenz in der ersten Komponente bleibt erhalten, da Teilfolgen konvergenter Folgen wieder konvergent mit demselben Grenzwert sind.

Satz Von Bolzano Weierstraß

Der Beweis beruht entscheidend auf dem Intervallschachtelungsprinzip, welches wiederum äquivalent ist zur Vollständigkeit der reellen Zahlen. Visualisierung der Beweisskizze [ Bearbeiten | Quelltext bearbeiten] Gegeben sei eine beschränkte Folge. Diese besitzt damit eine untere Schranke und eine obere Schranke. Als erstes Intervall der Intervallschachtelung wählt man. Das Intervall wird in zwei gleich große Teilintervalle unterteilt. Als zweites Intervall der Intervallschachtelung wählt man das Teilintervall, welches unendlich viele Folgenglieder von besitzt. Wenn beide Teilintervalle unendlich viele Glieder von besitzen, wählt man irgendeines der beiden Teilintervalle als. Das Intervall wird wieder in zwei Teilintervalle zerlegt. Auch hier wählt man das Teilintervall als drittes Intervall, welches unendlich viele Folgeglieder von besitzt. Diesen Prozess wiederholt man unendlich oft. So erhält man eine Intervallschachtelung. Aus dem Intervallschachtelungsprinzip folgt, dass es eine Zahl gibt, die in allen Intervallen enthalten ist.

Satz Von Weierstraß Club

Jede unbeschränkte Folge divergiert. Eine divergierende Folge ist unbeschränkt. \({\text{Supremum}} = \infty \): Wenn das Supremum "unendlich" ist, dann ist die Folge nach oben unbeschränkt \({\text{Infimum}} = - \infty \) Wenn das Supremum "minus unendlich" ist, dann ist die Folge nach unten unbeschränkt Monotonie einer Folge Die Monotonie einer Folge gibt an ob und wie die Werte der Folge steigen, fallen, konstant bleiben oder alternieren (d. h. das Vorzeichen wechseln). Der nachfolgende Wert ist... \({\forall n \in {\Bbb N}:{a_{n + 1}} \geqslant {a_n};}\) monoton wachsend größer gleich dem vorhergehenden Wert \({\forall n \in {\Bbb N}:{a_{n + 1}} > {a_n};}\) streng monoton wachsend größer dem vorhergehenden Wert \({\forall n \in {\Bbb N}:{a_{n + 1}} \leqslant {a_n};}\) monoton fallend kleiner gleich dem vorhergehenden Wert \({\forall n \in {\Bbb N}:{a_{n + 1}} < {a_n};}\) streng monoton fallend kleiner dem vorhergehenden Wert Alternierende Folge: \({a_n} = {\left( { - 1} \right)^n} = 1, \, \, - 1, \, \, 1, \, \, - 1,.. \)

Verallgemeinerung [ Bearbeiten | Quelltext bearbeiten] Der gleiche Satz - gemäß den Fassungen (Ia) oder (Ib) - gilt auch noch, wenn anstelle eines kompakten reellen Intervalls ein beliebiger kompakter topologischer Raum zugrundegelegt wird: Stetige Bilder von kompakten topologischen Räumen unter reellwertigen Funktionen sind innerhalb der reellen Zahlen stets abgeschlossen und beschränkt. [4] [5] [6] Tatsächlich kann diese Aussage noch weiter verallgemeinert werden: Das Bild eines kompakten topologischen Raums unter einer stetigen Funktion ist wieder kompakt. Da kompakte Teilmengen von metrischen Räumen (insbesondere also von) immer abgeschlossen und beschränkt sind, folgt sofort die obige Aussage. Da auch die Bilder zusammenhängender topologischer Räume unter stetigen Funktionen wieder zusammenhängend sind und die zusammenhängenden Teilmengen von gerade die Intervalle sind, stellt sich auch die Fassung (II) als Spezialfall eines allgemeinen topologischen Sachverhalts dar. Quellen und Hintergrundliteratur [ Bearbeiten | Quelltext bearbeiten] Otto Forster: Analysis 2 (= Grundkurs Mathematik).

Mon, 15 Jul 2024 15:45:01 +0000

Fahrschule Schulz Erlangen, 2024

[email protected]