Fahrschule Schulz Erlangen

quadratische Funktionen von 1. Zeichnen von Funktionen 1. 1. Ich kann... Wertetabellen nutzen 1. 2. KOOS verwenden 1. 3. Parabelschablonen benutzen 1. 4. Besondere Punkte ablesen 1. Materialien 1. Geodreieck 1. Parabelschablone 1. Druckbleistift 1. Farbige Fasermaler (nicht rot) 1. Aufgabentypen 1. Übungen 2. Formen der quad- ratischen Funktion 2. Scheitelpunktform y=a*(x-xs)^2+ys 2. Was machen xs und ys 2. 2... was macht a? 2. Polynomialform y=a*x^2+b*x+c 2. Typen umwandeln 2. Aus der Zeichnung die Scheitelpunktsform ablesen 2. Eine Funktionsgleichung in der Scheitelpunktsform aufstellen und mit einem weiteren Punkt den Streckfaktor a berechnen. Aufgabentypen 3. quadratische Gleichungen Was du können sollst! 3. Lösen mit der Scheitelpunktsform 3. Mathe_10C: Mindmap_Quadratische Funktionen. Lösen mit der pq-Formel 3. Punktproben durchführen 3. Sachaufgaben lösen 3. 5. Schnittpunkt von zwei Funktionen bestimmen 4. Übungen 4. Nullstellen berechnen 4. Scheitelpunktsform aus Zeichnung ablesen 4. Sachaufgabe Strommast 4. vermischte Aufgaben 4. vermischte Aufgaben 2 4.

Quadratische Funktionen Mindmapping

Verknüpfung Der Link wurde in Ihre Zwischenablage kopiert.

Quadratische Funktionen Mind Map Model

Normalform Wir sprechen von der Normalform einer quadratischen Funktion, wenn der Koeffizient a bei der Allgemeinform f(x) = a·x^2 + b·x + c zu 1 wird und das x 2 damit ohne Vorfaktor stehen darf. Die Normalform notieren wir mit x 2 + p·x + q = 0. Sie wird genutzt, um die Nullstellen der quadratischen Funktion mit Hilfe der p-q-Formel zu berechnen. Quadratische funktionen mind map free. Die Schritte hierzu sind: Funktionsgleichung null setzen: f(x) = a·x 2 + b·x + c = 0 Dividieren der Gleichung durch a, damit a = 1 wird: a·x 2 + b·x + c = 0 |:a \( \frac{a}{a}·x^2 + \frac{b}{a}·x + \frac{c}{a} = \frac{0}{a} \) \( x^2 + \frac{b}{a}·x + \frac{c}{a} = 0 \) Die Normalform ist damit gebildet: \( x^2 + \frac{b}{a}·x + \frac{c}{a} = 0 \qquad | \text{wobei} p = \frac{b}{a} \text{ sowie} q = \frac{c}{a} \\ x^2 + p·x + q = 0 \) Die Normalform x 2 + p·x + q = 0 lässt sich nun mit Hilfe der p-q-Formel lösen. 7. Scheitelpunkt Der Scheitelpunkt ist der Punkt auf der Parabel, der am höchsten liegt ("Hochpunkt") oder am tiefsten liegt ("Tiefpunkt").

Quadratische Funktionen Mind Map Free

Lesezeit: 15 min Nachstehend eine Übersicht über alle wesentlichen Formeln und Merksätze zu den Quadratischen Funktionen. 1. Definition Wir sprechen von einer "quadratischen Funktion", wenn die in der Funktionsgleichung höchste vorkommende Potenz der Variablen 2 ist (also x²). Einfachstes Beispiel: f(x) = x 2. 2. Normalparabel Die Normalparabel ergibt sich aus f(x) = x 2. Sie sieht wie folgt aus: 3. Verschobene Normalparabel Wir können die Normalparabel nach oben/unten verschieben, indem wir einen Wert zum x² hinzuaddieren. Allgemein: f(x) = x 2 + c. Als Beispiel f(x) = x 2 + 1: 4. Gestauchte/gestreckte Normalparabel Wir können die Normalparabel stauchen/strecken, indem wir einen Wert zum x² multiplizieren. Allgemein: f(x) = a·x 2. Je nachdem welchen Wert a hat, verändert sich die Parabel. Bei a > 1 wird sie gestreckt. Quadratische funktionen mindmapping. Bei 0 < a < 1 wird sie gestaucht. Bei a = 1 ergibt sich die Normalparabel. Bei negativen Werten für a (also a < 0) wird die Parabel gespiegelt. 5. Allgemeinform Die Allgemeinform der quadratischen Funktion lautet: f(x) = a·x 2 + b·x + c Je nachdem, wie die Werte für a, b und c gewählt werden, verändert sich der Graph der Parabel: 6.

Graphen Quadratischer Funktionen von 1. y=x² Normalparabel 1. 1. a=1; b=0; c=0 1. 2. symmetrisch zur y-Achse 1. 3. immer nach oben geöffnet 1. 4. charakteristischer Punkt (1|1) 1. 5. Scheitel immer S(0|0) 1. 6. Abbildung 2. y=x²+c 2. a=1; b=0 2. symmetrisch zur y-Achse 2. immer nach oben geöffnet 2. Normalparabel (y=x²) um c in y-Richtung verschoben 2. Scheitel S(c|0) 2. Vorzeichen von c beachten 2. 7. Abbildung 3. y=ax² 3. b=0; c=0 3. symmetrisch zur y-Achse 3. a>0: nach oben geöffnet 3. a<0: nach unten geöffnet 3. |a|<1: gestaucht (zusammengedrückt) 3. |a|>1: gestreckt (in die Länge gezogen) 3. a=0: Sonderfall y=0 --> Lineare Funktion auf x-Achse 3. 8. Scheitel immer S(0|0) 3. 9. Abbildung 4. y=(x+d)² 4. Achtung! Andere Form! 4. y=x²+2dx+d² (Bin. Formel) 4. Quadratische funktionen mind map model. symmetrisch zur Geraden x=–d 4. Normalparabel um –d in x-Richtung verschoben 4. Scheitel S(-d|0) 4. Achtung! Vorzeichen! 4. Abbildung 5. y=(x+d)²+e 5. Achtung! Andere Form! 5. y=x²+2dx+d²+e (Bin. Formel) 5. symmetrisch zur Geraden x=–d 5.

Nullstellen bei f(x) = ax² + bx Wenn wir kein konstantes Glied (also c) in der Funktionsgleichung haben, können wir ebenfalls die Nullstellen bei f(x) = ax² + bx berechnen. Hierzu klammern wir das x einfach aus. Funktionsgleichung null setzen: f(x) = 8·x 2 + 5·x = 0 Das x ausklammern: x · (8·x + 5) = 0 Der Satz vom Nullprodukt besagt, wenn ein Term in der Multiplikation null wird, wird der gesamte Term null: x · (8·x + 5) = 0 → x = 0 x · (8·x + 5) = 0 → 8·x + 5 = 0 Zweite Teilgleichung ausrechnen: 8·x + 5 = 0 8·x = -5 x = \( -\frac{5}{8} \) = -0, 625 x 1 = 0 x 2 = -0, 625 14. Quadratische Funktionen - Formelübersicht ❤️ - Matheretter. Linearfaktorform Um die Linearfaktorform bilden zu können, müssen uns die Nullstellen bekannt sein. Haben wir diese Nullstellen gegeben: x 1 = -3 und x 2 = 1, dann können wir die Linearfaktorform aufstellen mit: f(x) = (x 1 - (-3))·(x 2 - 1) Dies können wir schreiben als: f(x) = (x + 3)·(x - 1) Rechnen wir die beiden Klammern noch aus, dann erhalten wir die Allgemeinform (bzw. Normalform): f(x) = x·x + x·(-1) + 3·x + 3·(-1) f(x) = x 2 + 2·x - 3 15.

Mon, 15 Jul 2024 16:44:42 +0000

Fahrschule Schulz Erlangen, 2024

[email protected]